Abstract

Objective Sepsis and associated acute kidney injury (SAKI) are determined to be closely related to poor prognosis. Because the metabolic alterations of tubular epithelial cells (TECs) are crucial for the occurrence and development of SAKI, we carried out this present study to identify the metabolism changes of TECs during SAKI and relevant mechanisms. Methods Rat SAKI model and rat tubular epithelial cell line were used in our study. ELISA was used to determine the serum cytokines levels. Protein expressions were examined with Western-Blotting and the transcriptions of RNAs were determined with qRT-PCR. ADP/ATP assay and Oil Red O staining were used to examine the energy and lipid metabolism, respectively. Dual-luciferase reporter assay was carried out to determine the interactions between miRNA and specific proteins. Cell cycle arrest and apoptosis were determined with flow cytometry. Results Sepsis and AKI were induced 12 h after CLP. Energy and lipid metabolism reduced significantly while FOXO1 levels increased remarkably in TECs during SAKI. The expressions of both AKT and CDK2 and the transcriptions of relevant mRNAs reduced significantly in TECs during SAKI while miR-21-3p expression increased remarkably. Both AKT and CDK2 were determined as the direct targets of miR-21-3p. Furthermore, by in vitro experiments, it was demonstrated that FOXO1 levels were regulated by miR-21-3p in TECs via AKT/CDK2 and AKT/CDK2-FOXO1 pathway was crucial in the regulations of miR-21-3p on lipid metabolism, cell cycle arrest, and apoptosis of TECs. Conclusions MiR-21-3p mediates metabolism and cell fate alterations of TECs via manipulating AKT/CDK2-FOXO1 pathway, and that is crucial in the regulation of energy metabolism of TECs during SAKI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.