Abstract

Striated muscle is a highly specialized collection of tissues with contractile properties that vary according to functional needs. Although muscle fiber types are established postnatally, lifelong plasticity facilitates stimulus-dependent adaptation. Functional adaptation requires molecular adaptation, which is partially provided by miRNA-mediated post-transcriptional regulation. miR-206 is a muscle-specific miRNA enriched in slow muscles. We investigated whether miR-206 drives the slow muscle phenotype or is merely an outcome. We found that miR-206 expression increases in both physiological (including female sex and endurance exercise) and pathological conditions (muscular dystrophy and adrenergic agonism) that promote a slow phenotype. Consistent with that observation, the slow soleus muscle of male miR-206-knockout mice displays a faster phenotype than wild-type mice. Moreover, left ventricles of male miR-206 knockout mice have a faster myosin profile, accompanied by dilation and systolic dysfunction. Thus, miR-206 appears to be necessary to enforce a slow skeletal and cardiac muscle phenotype and to play a key role in muscle sexual dimorphisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.