Abstract
AKT signaling regulates multiple biological processes and expresses in various cancers. miR-205 plays complex roles in tumorigenesis and tumor progression by acting either as a tumor suppressor or an oncogene depending on the tumor type. Here we describe the molecular mechanism of miR-205 regulating epithelial-mesenchymal transition by activation of AKT signaling in endometrial cancer cells HEC-50B and HEC-1-A. The proliferation of HEC-50B cells transfected with miR-205 mimic was assessed by WST-1 assay. The migration and invasion were evaluated by BD transwell migration and matrigel invasion assays. The EMT markers were detected by Western blot. We found that miR-205 increased the proliferation in HEC-50B cells. The migration and invasion of HEC-50B cells and HEC-1-A cells were enhanced by miR-205. When HEC-50B cells and HEC-1-A cells were treated with anti-miR-205 inhibitor, the migration and invasion were decreased as compared with the negative control. The overexpression of miR-205 inhibited E-cadherin expression and promoted Snail expression by activation of AKT and downregulation of glycogen synthase kinase 3β. However, after the HEC-50B cells and HEC-1-A cells were treated with anti-miR-205 inhibitor, E-cadherin expression was increased and Snail protein level was decreased by inhibition of AKT expression. Our data strongly suggest that miR-205 plays an important role in endometrial cancer migration and invasion by targeting the AKT pathway. Our data highlight miR-205 as a potential molecular target for endometrial cancer treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.