Abstract

BackgroundHepatitis B virus (HBV) X protein (HBx) is a type of oncogenic protein involved in the progression of hepatocellular carcinoma (HCC) via interacting with host genes. Dysregulation of microRNAs (miRNAs) has been observed in HCC. This study aimed to investigate the role of HBx protein in the regulation of miR-19a, miR-122 and miR-223, and examine if these miRNAs involve in progression of malignant hepatocytes.MethodsQuantitative real time PCR (qRT-PCR) was used to measure the expression of miR-19a, miR-122 and miR-223 in patient samples and in HepG2 cells transfected with HBx or 1.3 fold HBV genome and also in HepG2.2.15 cells, which stably produces HBV. Their target mRNAs and proteins-PTEN, cyclin G1 and c-myc were measured by qRT-PCR and western blot, respectively. The effect of miR-19a, miR-122 and miR-223, and their respective target genes, on cell proliferation was analyzed using 5-ethynyl-2-deoxyuridine incorporation and MTT assay.ResultsMiR-19a showed an up-regulation in HBV-positive HCC patients compared to healthy controls and HBV-negative HCC patients, while miR-122 and miR-223 showed a down-regulation compared to healthy controls, and miR-122 in HBV-positive HCC patients was also down-regulated when compared to HBV-negative HCC patients. MiR-19a was found to be up-regulated in HepG2 cells transfected with HBx or 1.3 fold HBV genome, but down-regulated in HepG2.2.15 cells. MiR-122 and miR-223 were down-regulated in HBx or 1.3 fold HBV transfected HepG2 cells as well as in HepG2.2.15 cell. Their target mRNAs and corresponding proteins-PTEN was down-regulated, while cyclin G1 and c-myc were found to be up-regulated. Modulated expression of miR-19a, miR-122 and miR-223 enhanced cell proliferation of HBx-transfected HepG2 cells, and rescue experiment further showed that their target genes-PTEN, cyclin G1and c-myc involved in cell proliferation of HBx-transfected HepG2 cells.ConclusionsThe expression of miR-19a, miR-122 and miR-223 were differentially regulated by HBx protein, the differential expression of miR-19a, miR-122 and miR-223 plays an important role in cell proliferation of HCC. This study provides new insight into understanding how HBx protein interacts with miRNAs and subsequently regulates host function.

Highlights

  • Hepatitis B virus (HBV) X protein (HBx) is a type of oncogenic protein involved in the progression of hepatocellular carcinoma (HCC) via interacting with host genes

  • Differential expression of miR‐19a, miR‐122, and miR‐223 in HepG2 cells transfected with HBV X protein (HBx) or HBV and in HepG2.2.15 cells QRT-PCR confirmed that expression levels of HBx was higher in HBx-transfected or 1.3 fold HBV transfected

  • QRT-PCR analysis showed that miR-19a was up-regulated, and miR-122 and miR-223 were down-regulated in HBx-transfected HepG2 cells compared to the HepG2 cells transfected with control vector, pcDNA3.1 (Fig. 2a, n = 3, P < 0.05)

Read more

Summary

Introduction

Hepatitis B virus (HBV) X protein (HBx) is a type of oncogenic protein involved in the progression of hepatocellular carcinoma (HCC) via interacting with host genes. This study aimed to investigate the role of HBx protein in the regulation of miR-19a, miR-122 and miR-223, and examine if these miRNAs involve in progression of malignant hepatocytes. Recent studies showed that HBV X protein (HBx) plays an important role in the pathogenic mechanism of HBV-associated HCC [3]. Recent studies showed that HBx may increase telomerase activity to increase the lifespan of hepatocytes and subsequently transform them to malignancies [6]. HBx causes sustained changes in expression of cellular genes, which may result in enhanced hepatocytes growth and proliferation and lead to HCC

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.