Abstract

Prostate cancer chemoresistance is a major contributor to the poor survival of patients. MicroRNAs (miRNAs) play an important role in regulating cancer resistance. Here we aim to explore the role and mechanism of miR-199a in regulating prostate cancer resistance. MiR-199a expressions in human prostate cancer tissues and cell lines were investigated with real-time PCR (RT-PCR). MiR-199a was ectopically overexpressed in PC3 cells, and resistance to paclitaxel (PTX) was evaluated consequently. The interaction between miR-199a and the oncogene Yamaguchi sarcoma viral homolog 1 (YES1) was assessed after miR-199a overexpression. YES1 was ectopically overexpressed, followed by evaluation of PTX resistance. The efficacy of miR-199a as a therapeutic agent was also investigated in vivo. Downregulation of miR-199a was characteristic of prostate cancer, particularly recurrent cancers. MiR-199a was suppressed in PTX-resistant cell line. Overexpression of miR-199a inhibited PTX resistance. YES1 was a target of miR-199a, and overexpression of YES1 reversed the effect of miR-199a in suppressing PTX resistance. In vivo, miR-199a increased tumor PTX sensitivity. The downregulation of miR-199a contributes to PTX resistance in prostate cancer. YES1 mediates the regulation of miR-199a in prostate cancer PTX resistance. This miR-199a replacement therapy has potential to overcome PTX resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.