Abstract
The aim of this study was to investigate the functions and molecular mechanism of miR-196a in esophageal cancer (EC). miR-196a as well as UHRF2 and TET2 mRNA and protein levels in EC tissues and cells were detected using quantitative real-time PCR or western blot, respectively. Cell proliferation was evaluated via MTT assay. Transwell assays were used to detect cell migration. In addition, the targeted relationship between miR-196a and UHRF2 was assessed through a dual luciferase reporter assay. Enzyme-linked immunosorbent assay was performed to detect the levels of the cytosine intermediates 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). We found increased miR-196a expression in EC tissues and cells but decreased UHRF2 and TET2 expression. Next, functional experiments showed that knockdown of miR-196a or UHRF2 overexpression suppress EC cell proliferation and migration. miR-196a negatively regulates TET2 expression by directly targeting UHRF2. UHRF2 overexpression decreased 5mC levels but increased 5hmC levels. Furthermore, TET2 downregulation reversed the functions of miR-196a inhibition on EC cell proliferation and migration. Collectively, our study suggested that miR-196a was closely related to the progression of EC possibly by regulating the UHRF2/TET2 axis. Thus, miR-196a represents a potential new EC therapeutic target.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.