Abstract

BackgroundMicroRNA (miRNA), which participates in various physiological and pathological processes, is a highly conserved small RNA sequence. This study aimed to investigate the role of miR-194-5p in hypoxia/reoxygenation (H/R)-induced cardiomyocyte apoptosis and myocardial ischemia/reperfusion (I/R) injury.MethodsWe set up an H/R H9c2 cell model in vitro and an I/R mouse model in vivo. Then, cell vitality, apoptosis, and histopathological evaluation were conducted. Reactive oxygen species (ROS) generation and the activity of superoxide dismutase (SOD) and malondialdehyde (MDA) were examined by 2’,7’-Dichlorodihydrofluorescein diacetate (H2DCFDA), and enzyme-linked immunosorbent assay (ELISA), respectively. The level of creatine kinase isoenzyme (CK-MB), cardiac troponin I (cTnI), myoglobin (Mb) is examined by ELISA. The expression of Caspase-3, cleaved-Caspase-3, Bax, Bcl-2, phosphatase and tensin homolog deleted on chromosome ten (PTEN), and protein kinase B (AKT) was analyzed by western blot.ResultsData showed the expression of miR-194-5p was decreased in H/R-induced H9c2 cells and I/R-induced mouse. Conversely, overexpression of miR-194-5p could improve cardiomyocyte damage in ischemic models in vivo and in vitro. Furthermore, mitogen-activated protein kinase 1 (MAPK1) was found as a direct target of miR-194-5p, which negatively regulated the expression of MAPK1. The up-regulation of MAPK1 inhibited the myocardial protection previously observed by miR-194-5p.ConclusionsOur study shows overexpression of miR-194-5p protects against H/R injury in vitro and cardiac I/R injury in vivo, which involves the inhibition of cardiac apoptosis and oxidative stress by targeting MAPK1 expression via PTEN/AKT pathway. These findings supply novel insights into potential therapeutic targets for cardiovascular diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.