Abstract
Gastric cancer (GC) is one of the most prevalent malignancies in the digestive system across the world. The function and mechanism of PDLIM1, a cancer-suppressing gene, in gastric cancer progression remain unclear. This study is aimed at investigating the expression features and function of PDLIM1 in GC. RT-qPCR and western blot were used to compare the profiles of PDLIM1 and miR-187 between GC and normal tissues. The cell models of PDLIM1 overexpression and low expression were established in gastric cancer cell lines MKN45 and AGS. CCK8 and BrdU assays measured cell proliferation. Flow cytometry monitored cell apoptosis. Transwell analyzed cell invasion and migration. The influence of miR-187 overexpression on gastric cancer development was assessed. We predicted the targeted correlation between miR-187 and PDLIM1 through bioinformatics, which was corroborated via dual luciferase activity assay and RIP. Meanwhile, the cell model of PDLIM1 overexpression was built in AGS cells transfected with miR-187 mimics. A rescue experiment was conducted to assess the impact of PDLIM1 overexpression on the procancer function of miR-187. As a result, in contrast with normal paracancer tissues, PDLIM1 was substantially downregulated in GC tissues. Moreover, PDLIM1 overexpression considerably dampened proliferation, invasion, and migration in GC cells, boosted the cell apoptosis, and bolstered their sensitivity to cisplatin. PDLIM1 knockdown or miR-187 overexpression dramatically fostered GC cell proliferation, invasion, and migration and repressed cell apoptosis. Mechanism studies demonstrated that PDLIM1 vigorously restrained the profiles of the Hippo-YAP signaling pathway and the downstream target genes. miR-187 targeted PDLIM1, while miR-187 overexpression cramped PDLIM1 expression. The rescue experiment suggested that PDLIM1 overexpression weakened the procancer function of miR-187 in GC cells. In conclusion, our study demonstrated that PDLIM1 presented a low expression in GC tissues, while miR-187/PDLIM1 participated in GC development and cisplatin sensitivity by mediating the Hippo-YAP signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.