Abstract

The telomeric repeat-binding factor 2 (TRF2) is a telomere-capping protein that plays a key role in the maintenance of telomere structure and function. It is highly expressed in different cancer types, and it contributes to cancer progression. To date, anti-cancer strategies to target TRF2 remain a challenge. Here, we developed a miRNA-based approach to reduce TRF2 expression. By performing a high-throughput luciferase screening of 54 candidate miRNAs, we identified miR-182-3p as a specific and efficient post-transcriptional regulator of TRF2. Ectopic expression of miR-182-3p drastically reduced TRF2 protein levels in a panel of telomerase- or alternative lengthening of telomeres (ALT)-positive cancer cell lines. Moreover, miR-182-3p induced DNA damage at telomeric and pericentromeric sites, eventually leading to strong apoptosis activation. We also observed that treatment with lipid nanoparticles (LNPs) containing miR-182-3p impaired tumor growth in triple-negative breast cancer (TNBC) models, including patient-derived tumor xenografts (PDTXs), without affecting mouse survival or tissue function. Finally, LNPs-miR-182-3p were able to cross the blood-brain barrier and reduce intracranial tumors representing a possible therapeutic option for metastatic brain lesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.