Abstract

Colon cancer (CC) is a common and lethal cancer to be further elucidated. Accumulating studies elaborated the crucial role of miRNAs differentially expressed in cancer cell growth. In the present study, differentially expressed miRNAs related to CC were screened by the bioinformatics methods on the strength of TCGA database. Highly expressed miR-17-3p was proved to notably influence CC cell proliferative, migratory, invasion, and apoptotic levels. By using TargetScan and miRTarBase databases, phospholipase C delta 1 (PLCD1) was predicted as a target downstream of miR-17-3p, and their binding site was predicted. Through TCGA database, low expression of PLCD1 and its significant negative correlation with miR-17-3p were identified in CC. Dual-luciferase reporter gene analysis ascertained the targeting relationship between miR-17-3p and PLCD1. Cell Counting Kit-8, colony formation, and transwell assays were introduced to detect CC cell malignant progression. Flow cytometry was applied to detect CC cell apoptosis. As result revealed, miR-17-3p was markedly highly expressed, and PLCD1, the target of miR-17-3p, was remarkably lowly expressed in CC cells. Forced expression of miR-17-3p facilitated CC cell proliferation, migration, invasion, and suppressed apoptosis. Biological roles of upregulating miR-17-3p in the colon cancer cells were markedly weakened by over-expressing PLCD1 simultaneously. MiR-17-3p regulated CC cell malignant progression, as well as apoptosis by targeting PLCD1. Moreover, KIF14 was extensively considered as an involved tumor-promoting gene that could be affected by miR-17-3p/PLCD1 axis based on BioGRID analysis and CO-IP assay. Concludingly, this study exhibited that miR-17-3p facilitated CC progression by PLCD1 downregulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call