Abstract

BackgroundFibroblasts are crucial mediators of tumor-stroma cross-talk through synthesis and remodeling of the extracellular matrix and production of multiple soluble factors. Nonetheless, little is still known about specific determinants of fibroblast pro-tumorigenic activity in lung cancer. Here, we aimed at understanding the role of miRNAs, which are often altered in stromal cells, in reprogramming fibroblasts towards a tumor-supporting phenotype.MethodsWe employed a co-culture-based high-throughput screening to identify specific miRNAs modulating the pro-tumorigenic potential of lung fibroblasts. Multiplex assays and ELISA were instrumental to study the effect of miRNAs on the secretome of both primary and immortalized lung fibroblasts from lung cancer patients and to evaluate plasmatic levels of HGF in heavy smokers. Direct mRNA targeting by miRNAs was investigated through dual-luciferase reporter assay and western blot. Finally, the pro-tumorigenic activity of fibroblasts and their conditioned media was tested by employing in vitro migration experiments and mouse xenografts.ResultsWe identified miR-16 as a master regulator of fibroblast secretome and showed that its upregulation reduces HGF secretion by fibroblasts, impairing their capacity to promote cancer cell migration. This effect is due to a pleiotropic activity of miR-16 which prevents HGF expression through direct inhibition of FGFR-1 signaling and targeting of HGF mRNA. Mechanistically, miR-16 targets FGFR-1 downstream mediator MEK1, thus reducing ERK1/2 activation. Consistently, chemical or genetic inhibition of FGFR-1 mimics miR-16 activity and prevents HGF production. Of note, we report that primary fibroblast cell lines derived from lungs of heavy smokers express reduced miR-16 levels compared to those from lungs not exposed to smoke and that HGF concentration in heavy smokers’ plasma correlates with levels of tobacco exposure. Finally, in vivo experiments confirmed that restoration of miR-16 expression in fibroblasts reduced their ability to promote tumor growth and that HGF plays a central role in the pro-tumorigenic activity of fibroblasts.ConclusionsOverall, these results uncover a central role for miR-16 in regulating HGF production by lung fibroblasts, thus affecting their pro-tumorigenic potential. Correlation between smoking exposure and miR-16 levels could provide novel clues regarding the formation of a tumor-proficient milieu during the early phases of lung cancer development.

Highlights

  • Fibroblasts are crucial mediators of tumor-stroma cross-talk through synthesis and remodeling of the extracellular matrix and production of multiple soluble factors

  • Overall, these results uncover a central role for miR-16 in regulating Hepatocyte growth factor (HGF) production by lung fibroblasts, affecting their pro-tumorigenic potential

  • In conclusion, we show here that miR-16 is a crucial mediator of HGF production by lung fibroblasts through regulation of different downstream targets including FGF receptor-1 (FGFR-1) and mitogen-activated protein kinase/ERK kinase 1 (MEK1)

Read more

Summary

Introduction

Fibroblasts are crucial mediators of tumor-stroma cross-talk through synthesis and remodeling of the extracellular matrix and production of multiple soluble factors. Effective treatment still represents a major challenge due to multiple layers of heterogeneity which lead to differential cancer cell aggressiveness and response to therapy [5, 6]. This variability is the result of many cancer cell autonomous mechanisms such as genetic and epigenetic alterations which lead to the perturbation of several pathways [7], and derives from the influence of tumor microenvironment (TME) [8, 9]. The understanding of how these extracellular signals influence cancer cells could provide new molecular targets of potential clinical relevance and/or improved prognostic tools [12]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call