Abstract

Many miRNAs have been identified as essential issues and core determining factors in tumor radiation. Recent reports have demonstrated that miRNAs and Toll-like receptors could exert reciprocal effects to control cancer development in various ways. However, a novel role of miR-15a/16 in enhancing radiation sensitivity by directly targeting TLR1 has not been reported, to our knowledge. Bioinformatic analyses, luciferase reporter assay, biochemical assays, and subcutaneous tumor establishment were used to characterize the signaling pathways of miRNA-15a/16 in response to radiation treatment. First, an inverse correlation between the expression of miR-15a/16 and TLR1 protein was revealed in non-small cell lung cancer (NSCLC) and normal lung tissues. Next, we corroborated that miR-15a/16 specifically bound to TLR1 3'UTR and inhibited the expression of TLR1 in H358 and A549 cells. Furthermore, miR-15a/16 downregulated the activity of the NF-κB signaling pathway through TLR1. In addition, overexpression of miR-15a/16 inhibited survival capability and increased radiation-induced apoptosis, resulting in enhancement of radiosensitivity in H358 and A549 cells. Finally, subcutaneous tumor bearing NSCLC cells in a nude mice model was established, and the results showed that combined groups (miR-15a/16 + radiation) inhibited tumor growth more significantly than did radiation alone. We mainly elucidate that miRNA-15a/16 can enhance radiation sensitivity by regulating the TLR1/NF-κB signaling pathway and act as a potential therapeutic approach to overcome radioresistance for lung cancer treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.