Abstract

Purpose: To examine the impact of miR-155 on sepsis-induced myocardial apoptosis and heart failure, and to explore its molecular mechanism.
 Methods: Mice were divided into four groups and septic myocardial dysfunction was induced by intraperitoneal injection of lipopolysaccharide (LPS, 5 mg/kg). The LPS stimulation expression of miR-155 levels was determined by real time-polymerase chain reaction (RT-PCR). In vivo, echocardiography and TUNEL staining were used to investigate the effects of miR-155 in inhibiting cardiac function and myocardial apoptosis. Changes in the expression of eNOS when miR-155 was overexpressed or inhibited were determined by RT-PCR, while double luciferase gene assay assessed the relationship between eNOS and miR-155, eNOS, expression of iNOS, SGC alpha 1, and PKG protein.
 Results: MiR-155 was significantly increased after LPS stimulation (p < 0.01). In vitro, the inhibition of miR-155 by antagomiR significantly down-regulated the apoptosis of cardiomyocytes (p < 0.05), while overexpression of miR-155 by agomiR significantly up-regulated the apoptosis of cardiomyocytes (p < 0.05). In vivo, ejection fraction, fractional shortening and heart weight were significantly increased (p < 0.05), while apoptosis was significantly decreased (p < 0.05). MiR-155 negatively regulated the expression of eNOS (p < 0.01), and targeted the expression of eNOS mRNA (p < 0.001). In addition, the expression of eNOS, sGCα1 and PKA were significantly up-regulated (p < 0.05), while the expression of iNOS was significantly down-regulated (p < 0.05) after the inhibition of miR-155 in LPS mouse model.
 Conclusion: MiR-155 regulates sepsis-induced cardiomyocyte apoptosis and heart failure through eNOS /NO/cGMP signaling pathway. Thus, these findings can potentially facilitate the development of an effective strategy for management of heart failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call