Abstract
Mesenchymal stem cells (MSCs) are identified as a promising tool for the treatment of autoimmune diseases, and several microRNAs (miRNAs) are shown to exhibit vital roles in immune diseases. However, their function and mechanism in systemic lupus erythematosus (SLE) is still unclear. The qRT-PCR analysis was employed to investigate level of miR-153-3p. Subsequently, western blot and luciferase reporter assays were carried out to determine miR-153-3p targets. Cell proliferation and migration were determined using EdU proliferation assays and transwell migration assays. Apoptosis levels were evaluated by annexin V staining and flow cytometry. We used human umbilical cord-derived mesenchymal stem cells (UC-MSCs) transplantation to treat MRL/lpr mice. It was observed that miR-153-3p was upregulated in patients with SLE, and was closely related to SLE disease activity. Overexpression of miR-153-3p decreased UC-MSCs proliferation and migration, and weakened UC-MSCs-mediated decrease of follicular T helper (Tfh) cells and increase of regulatory T (Treg) cells through repressing PELI1 in vitro. We also found that PELI1 overexpression abolished the function of miR-153-3p on UC-MSCs. Furthermore, miR-153-3p overexpression weakened the therapeutic effect of UC-MSCs in MRL/lpr mice in vivo. Taken together, all data suggested that miR-153-3p is a mediator of SLE UC-MSCs regulation and may function as a new therapeutic target for the treatment of lupus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.