Abstract

MicroRNAs (miRNAs) are dysregulated in many tumors and have been found to play crucial roles in cancer biology. Retinoblastoma is a rare tumor that develops rapidly from a malignant tumor of immature cells in the retina known as photoreceptor progenitors. Our study aimed to explore the role of miR-146a in the pathology of retinoblastoma. Potential target gene of miR-146a was predicted by Targetscan. Reverse transcription quantitative polymerase chain reaction (RT-PCR) showed that miR-146a was downregulated and ventral nerve tumor antigen 1 (Neuro - oncological ventral antigen 1, NOVA1) was upregulated in retinoblastoma. Luciferase assay confirmed that miR-146a directly target NOVA1. MiR-146a knockdown and overexpression experiments were performed and found that miR-146a could regulate the expression of NOVA1. The miR-146a knockdown and overexpression experiments were conducted to investigate the biological function of miR-146a. MiR-146a was found inhibited the viability, proliferation and invasion of retinoblastoma cell by MTT, EdU, and transwell assays. Flow cytometry was performed for the apoptosis analysis and miR-146a increased the apoptosis of retinoblastoma cell was found. Above phenomenon can be rescued by overexpression of NOVA1. In conclusion, these results suggest that miR-146a acts as a tumor suppressor and can act as a potential therapeutic target for retinoblastoma in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call