Abstract

We previously reported that epithelial-derived interleukin (IL)-1α drives fibroblast-derived inflammation in the lung epithelial-mesenchymal trophic unit. Since miR-146a-5p has been shown tonegatively regulate IL-1 signalling, we investigated the role of miR-146a-5p in the regulation of IL-1α-driven inflammation in chronic obstructive pulmonary disease (COPD).Human bronchial epithelial (16HBE14o-) cells were co-cultured with control and COPD-derived primary human lung fibroblasts (PHLFs), and miR-146a-5p expression was assessed with and without IL-1α neutralising antibody. Genomic DNA was assessed for the presence of the single nucleotide polymorphism (SNP) rs2910164. miR-146a-5p mimics were used for overexpression studies to assess IL-1α-induced signalling and IL-8 production by PHLFs.Co-culture of PHLFs with airway epithelial cells significantly increased the expression of miR-146a-5p and this induction was dependent on epithelial-derived IL-1α. miR-146a-5p overexpression decreased IL-1α-induced IL-8 secretion in PHLFs via downregulation of IL-1 receptor-associated kinase-1. In COPD PHLFs, the induction of miR-146a-5p was significantly less compared with controls and was associated with the SNP rs2910164 (GG allele) in the miR-146a-5p gene.Our results suggest that induction of miR-146a-5p is involved in epithelial-fibroblast communication in the lungs and negatively regulates epithelial-derived IL-1α induction of IL-8 by fibroblasts. The decreased levels of miR-146a-5p in COPD fibroblasts may induce a more pro-inflammatory phenotype, contributing to chronic inflammation in COPD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call