Abstract

Cervical cancer is the third most common gynecologic cancer in the world. Exploration of the molecular mechanism underlying cervical cancer pathogenesis will provide new insights into the development of novel therapies. In this study, we were aimed to characterize a novel miRNA in cervical cancer tumorigenesis. First, we measured the expressional change of miR-144-3p in clinical tissues and cancer cells. Second, we employed cell proliferation, cell migration, and invasion assays to understand its functional role in cervical cancer. Then, we confirmed in vitro findings in xenograft cancer model. Last, we mapped out a downstream target of miR-144-3p and validated its functional role in cancer cells. In the results, miR-144-3p was found significantly downregulated in cervical cancer cells and tissues. Over-expressing miR-144-3p suppressed cancer cells growth and metastasis. Consistent with in vitro results, over-expressing miR-144-3p led to tumor growth inhibition in vivo. Further on, MAPK6 was identified as an endogenous target of miR-144-3p in cervical cancer. Knocking down MAPK6 inhibited cervical cancer cells proliferation, migration, and invasion potential. Our investigation was the first time to report miR-144-3p as a tumor suppressive miRNA in cervical cancer. It inhibited tumor growth by targeting MAKP6. The newly identified signalling axis may serve as novel therapeutic targets to manage cervical cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.