Abstract

Long-term denervation leads to the disintegration of nicotinic acetylcholine receptor (nAChR) located at the endplate structure, which translates to deficits in functional activation despite nerve repair. Because of a lack of effective measures to protect AChR expression, we explored the effect of alterations in muscular miR-142a-3p on nAChR. In this study, we constructed a model of miR-142a-3p knockdown by transfecting a miR-142a-3p inhibitor short hairpin RNA (shRNA) into C2C12 myotubes, and we injected this miR-142a-3p inhibitor shRNA into the tibialis anterior (TA) muscle in uninjured mice and in denervated mice by transecting the sciatic nerve. Our results showed that miR-142a-3p knockdown led to an increased number and area of AChR clusters in myotubes invitro and larger neuromuscular endplates in adult mice. Furthermore, miR-142a-3p knockdown delayed the disintegration of motor endplates after denervation. Last, upon miR-142a-3p knockdown in uninjured and denervated mice, we observed an increase in the mRNA levels of five AChR subunits as well as mRNAs of genes implicated in AChR transcription and AChR clustering. Together, these results suggest that miR-142a-3p may be a potential target for therapeutic intervention to prevent motor endplate degradation following peripheral nerve injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call