Abstract
Hematopoietic stem cells (HSCs) emerge during embryogenesis from hemogenic endothelium, but it remains unclear how the HSC lineage is initially established from mesoderm during ontogeny. In Xenopus, the definitive hemangioblast precursors of the HSC lineage have been identified in dorsal lateral plate (DLP) mesoderm, and a transcriptional gene regulatory network (GRN) controlling hemangioblast programming has been elucidated. Herein, we identify an essential role for microRNAs (miRNAs) in establishing the mesodermal lineage leading to both HSC emergence and vasculogenesis and determine that a single miRNA, miR-142-3p, is primarily responsible for initiation of definitive hemangioblast specification. miR-142-3p forms a double-negative gate unlocking entry into the hemangioblast program, in part by inhibiting TGFβ signaling. Our results table miR-142-3p as a master regulator of HSC lineage specification, sitting at the apex of the hierarchy programming the adult hemangioblast, thus illustrating that miRNAs can act as instructive determinants of cell fate during development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.