Abstract

Among T helper (Th) lineages differentiated from naïve CD4+ T cells, interleukin (IL)-17-producing Th17 cells are highly correlated with the pathogenesis of autoimmune disorders. This study aimed to clarify the involvement of miR-141-3p and miR-200a-3p in Th17 cell differentiation as well as explore their potential target genes involved. For this purpose, human naïve CD4+ T cells were cultured under Th17 cell polarizing condition. The differentiation process was confirmed through measurement of IL-17 secretion using the ELISA method and assessment of Th17 cell-defining genes expression during the differentiation period. MiR-141-3p and miR-200a-3p downstream genes were identified via consensus and integration in silico approach and their expression pattern and alterations were evaluated by quantitative real-time PCR. Finally, direct interaction between both microRNAs (miRNAs) and their common predicted target sequences was approved by dual-luciferase reporter assay. Highly increased IL-17 secretion and Th17 lineage-specific genes expression confirmed Th17 cell differentiation. Our results have demonstrated that miR-141-3p and miR-200a-3p are Th17 cell-associated miRNAs and their expression level is upregulated significantly during Th17 cell induction. We have also found that retinoic acid receptor beta (RARB) gene, whose product has been reported as a negative regulator of Th17 cell generation, is a direct target of both miRNAs and its downregulation can affect the transcriptional level of JAK/STAT pathway genes. Overall, our results have identified two novel Th17 lineage-associated miRNAs and have provided evidence for the RARB-dependent mechanism of miR-141-3p and miR-200a-3p-induced Th17 cell differentiation and hence Th17-mediated autoimmunity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call