Abstract

Background The role and function of microRNA (miRNA, miR)-140-5p in the calcification of vascular smooth muscle cells (VSMCs) have been explored in this study. Methods The calcium nodules formed in transfected and β-glycerophosphate (β-GP)-treated VSMCs were observed using Alizarin Red S staining, and alkaline phosphatase (ALP) activity was determined. VSMC apoptosis was detected with flow cytometry assay. The target gene of miR-140-5p was predicted and confirmed with dual-luciferase reporter assay. Relative expressions of miR-140-5p, toll like receptor 4 (TLR4) and vascular calcification-related proteins (α-smooth muscle actin, α-SMA; Msh Homeobox 2, MSX2; bone morphogenetic protein 2, BMP2; Kruppel-like factor 4, KLF4; Runt-related transcription factor 2, RUNX2) were measured through quantitative real time polymerase chain reaction (qRT-PCR) and western blot. Results MiR-140-5p upregulation reversed the effects of β-GP on downregulating miR-140-5p and α-SMA expressions, enhancing ALP activity, calcium nodule formation and cell apoptosis, and upregulating levels of MSX2, BMP2, KLF4 and RUNX2. TLR4 was the target of miR-140-5p, and offset the effects of miR-140-5p on β-GP-induced VSMCs. Conclusions MiR-140-5p upregulation represses β-GP-induced calcification of VSMCs via targeting TLR4, providing a potential therapeutic method for vascular calcification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call