Abstract

MiRNAs may promote or inhibit tumor recurrence and drug resistance. MiR-139-5p is reportedly downregulated in colorectal cancer patient samples, but it is unknown whether and how miR-139-5p regulates drug resistance. Cancer stem cells (CSCs) are postulated to be important promoters of multiple drug resistance (MDR). In this study, we established a MDR cell model which strongly expressed the CSC-associated biomarkers CD44 and CD133. MiR-139-5p expression was reduced in MDR cell lines, while overexpression of miR-139-5p reversed CD44+/CD133+-associated MDR. We also identified NOTCH1, an important protein for stem cell maintenance and function, as a direct target of miR-139-5p, both in vitro and in a knockout mouse model. Notch1 expression was upregulated in tumor samples and inversely correlated with expression of miR-139-5p. Silencing NOTCH1 exerted an effect similar to overexpression of miR-139-5p by inhibiting the CD44+ and CD133+ population and reversing the drug-resistant phenotype. In conclusion, miR-139-5p downregulated NOTCH1 signaling to reverse CD44+/CD133+-associated MDR in colorectal cancer cells. Given this insight into the miRNA regulation of MDR, miR-139-5p could be a promising therapeutic target for colorectal cancer therapy.

Highlights

  • Colorectal cancer (CRC) is the third most common cause of cancer-related death, but treatment of CRC often fails to eradicate all of the tumor cells because the cells have intrinsic or acquired drug resistance [1, 2]

  • An in vivo study demonstrated that overexpression of NOTCH1 ablated the inhibitory effects of miR-139-5p on tumor growth (Figure 6D). All these results provided further evidence that NOTCH1 expression is inhibited by miR-139-5p, and that the downregulation of miR-139-5p is a key promoter of CD44+/CD133+-associated colorectal drug resistance because it potentiates NOTCH1 expression

  • In many cases of tumor recurrence, the cancer cells are resistant to conventional chemotherapy

Read more

Summary

Introduction

Colorectal cancer (CRC) is the third most common cause of cancer-related death, but treatment of CRC often fails to eradicate all of the tumor cells because the cells have intrinsic or acquired drug resistance [1, 2]. Understanding the mechanism of MDR in CRC cells is crucial for the optimization of current therapeutic techniques. CSCs can be defined by their high expression of CD44 [10] and CD133, and this unique phenotype allows the identification of colorectal CSCs as a distinct population from the bulk tumor cells. This CD44+/ CD133+ cell population is thought to initiate and sustain tumor growth, and is an obvious target for therapeutic treatment [11]. The CD133+/CD44+ population, which comprises the cancer initiating cells (CICs) [12], may be the best biomarker for the early detection of CRC [13,14,15]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.