Abstract
Gastric cancer (GC) is prevalent worldwide but has a dismal prognosis, and its molecular and pathogenic pathways remain unknown. Kallikrein 11 (KLK11) has a reduced expression in GC and may be a promising biomarker. Herein, the function of KLK11 in GC and its regulatory mechanism was studied. Gene sequencing and quantitative reverse transcription-polymerase chain reaction were used to determine the expression of KLK11 in GC and precancerous lesions. Cell function tests and flow cytometry were conducted to determine the proliferative capacity and cell cycle of GC cells, respectively. A luciferase reporter test confirmed the interaction between RNA molecules. The mTOR/4E-BP1 signaling pathway was analyzed using western blotting. KLK11 has a suppressed expression in GC samples. KLK11 decreased the proliferative capacity of GC cells, by inhibiting the degree of mTOR/4E-BP1 phosphorylation. In contrast, miR-1304 increased GC cell proliferation by inhibiting KLK11. Moreover, KLK11 was able to limit in vivo GC cell proliferation. These findings reveal a promising strategy to prevent and treat GC by targeting the KLK11-mediated mTOR/4E-BP1 cascade.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.