Abstract

Neural stem cells (NSCs) are self-renewing, undifferentiated and multipotent precursors that can generate neuronal and glial lineages. MicroRNAs (miRNAs) are small non-coding RNAs that act crucial roles in cell proliferation, differentiation and migration. However, the role of miR-1297 in the development of NSCs is still unknown. Primary NSCs were isolated from rat's embryos. The expression of miR-1297 and Hes1 were measured by qRT-PCR. Western blot was performed to detect the protein expression of Hes1, β-tubulin-III and GFAP. We showed that miR-1297 expression was upregulated during NSC differentiation, while the expression of Hes1 was decreased during NSC differentiation. Elevated expression of miR-1297 promoted the NSCs viability and increased the formation of NSCs to neurospheres. Ecoptic expression of miR-1297 promoted β-tubulin-III expression in the NSCs. Overexpression of miR-1297 decreased GFAP expression in the NSCs. Furthermore, we demonstrated that miR-1297 regulated NSCs viability and differentiation by directly targeting Hes1. Overexpression of miR-1297 suppressed Hes1 expression in the NSCs. These results suggested that miR-1297 played an important role in NSCs viability and differentiation through inhibiting Hes1 expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.