Abstract

AimsThe aim of this study was to explore the role of miR-122-5p in acute lung injury. Materials and methodsMice were subjected to intratracheal injection of lipopolysaccharide to establish an acute lung injury model. The mice also received miR-122-5p antagonist and mimic via injection to inhibit or overexpress miR-122-5p in the lung tissue, respectively. In an in vitro experiment, we isolated primary mouse lung microvascular endothelial cells and established a cell injury model via lipopolysaccharide treatment. Key findingsMice injected with an miR-122-5p antagonist exhibited reduced lung injury, inflammation and oxidative stress, while mice injected with a miR-122-5p mimic exhibited exaggerated lung injury, inflammation and oxidative stress. In an in vitro experiment, we found that the miR-122-5p antagonist suppressed lipopolysaccharide-induced inflammation, apoptosis and oxidative stress. Moreover, miR-122-5p regulated the promoter activity of DUSP4, which negatively regulated ERK1/2 signaling. The use of DUSP4 siRNA counteracted the effects of the miR-122-5p antagonist. SignificanceTaken together, these results show that miR-122-5p protected against acute lung injury via regulation of DUSP4/ERK signaling in pulmonary microvascular endothelial cells. MiR-122-5p antagonism may be a promising treatment method for acute lung injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.