Abstract
MicroRNAs (miRNAs) are versatile regulators of pulmonary arterial remodeling in idiopathic pulmonary arterial hypertension (IPAH). We herein aimed to characterize miRNAs in peripheral blood mononuclear cell (PBMC) and plasma exosomes, and investigate specific miRNA expression in pulmonary artery cells and lung tissues in IPAH. A co-dysregulated miRNA was identified from the miRNA expression profiles of PBMC and plasma exosomes in IPAH. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the potential function of differentially expressed miRNAs. Real-time quantitative reverse transcription polymerase chain reaction was used to validate the expression of specific miRNAs in hypoxia-induced pulmonary microvascular endothelial cells (PMECs), pulmonary artery smooth muscle cells (PASMCs), pericyte cells (PCs), and lung tissues of patients with IPAH and rats. Finally, the miRNA-mRNA mechanisms of miR-122-5p were predicted. MiR-122-5p was the only co-upregulated miRNA in PBMC and plasma exosomes in patients with IPAH. Functional analysis of differentially expressed miRNAs revealed associations with the GO terms “transcription, DNA-templated,” “cytoplasm,” and “metal ion binding” in both PBMC and plasma exosomes, KEGG pathway MAPK signaling in PBMC, and KEGG-pathway human papillomavirus infection in plasma exosomes. Hypoxic PMECs and PCs, lung tissue of patients with IPAH, and rats showed increased expression of miR-122-5p, but hypoxic PASMCs showed decreased expression. And miR-122-5p mimics and inhibitor affected cell proliferation. Finally, miR-122-5p was found to potentially target DLAT (in lung tissue) and RIMS1 (in PMECs) in IPAH. According to the dual-luciferase assay, miR-122-5p bound to DLAT or RIMS1. In studies, DLAT imbalance was associated with cell proliferation and migration, RIMS1 is differentially expressed in cancer and correlated with cancer prognosis. Our findings suggest that the miR-122-5p is involved in various biological functions in the adjacent vascular wall cells in IPAH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.