Abstract

BackgroundTo investigate the effect of miR-10a on renal tissues with ischemia reperfusion (I/R) injury in rats and to explore the underlying mechanisms of the effect of miR-10a on hypoxia–reoxygenation in HK-2 cells.MethodsMiR-10a level was measured in the renal tissues of rats with I/R rats using RT-PCR. In order to research the role of miR-10a in renal tissues, an miR-10 agonist and an miR-10a antagonist were used to treat I/R-injured rats. Levels of serum creatinine and blood urea nitrogen, renal histopathology, and levels of cell apoptosis were analyzed separately in renal tissues from the rats. Phosphatidylinositol 3-kinase (PI3K)/Akt pathway related proteins were measured by Western blotting. In addition, HK-2 cells were cultured in order to study the mechanism of action of miR-10a in the hypoxia-reoxygenation model being studied. Finally, the dual luciferase reporter gene assay was used to confirm that the PI3K p100 catalytic subunit α (PIK3CA) gene was targeted by miR-10a.ResultsAfter renal I/R injury in rats, miR-10a expression increased significantly (p < 0.05). Injection of miR-10a agonist significantly aggravated the renal injury and raised the level of cell apoptosis in the renal tissues of I/R-injured rats (p < 0.05). However, administration of miR-10a antagonist led to obvious improvement of the renal injury, decreased renal cell apoptosis, and inhibited PI3K/Akt pathway activity (p < 0.05). In in vitro experiments, the negative relationship between PIK3CA and miR-10a levels was confirmed. Furthermore, overexpression of miR-10a significantly decreased the proliferation of HK-2 cells, and increased cell apoptosis via up-regulation of the PI3K/Akt pathway (p < 0.05).ConclusionThe aggravation of renal I/R injury by miR-10a was associated with a decrease in the activity of PIK3CA/PI3K/Akt pathway.

Highlights

  • To investigate the effect of miR-10a on renal tissues with ischemia reperfusion (I/R) injury in rats and to explore the underlying mechanisms of the effect of miR-10a on hypoxia–reoxygenation in HK-2 cells

  • Results miR-10a is overexpressed in renal I/R rats As showed in Fig. 1a, the expression of miR-10a was clearly increased in the I/R group compared with the sham group (p < 0.05)

  • The serum creatinine (Scr) and blood urea nitrogen (BUN) levels were significantly increased after renal I/R injury when compared to the sham group (p < 0.05, Fig. 1c, d)

Read more

Summary

Introduction

To investigate the effect of miR-10a on renal tissues with ischemia reperfusion (I/R) injury in rats and to explore the underlying mechanisms of the effect of miR-10a on hypoxia–reoxygenation in HK-2 cells. Renal I/ R injury, causes cell homeostasis to be destroyed, leading to inflammation and apoptosis [2]. R injury can increase the incidences of other diseases, such as myocardial infarction and stroke [3]. Numerous microRNAs (miRNAs) are known to play critical roles in the pathogenesis renal I/R injury in rats [4]. As a member of the miR-10 family, miR-10a plays essential roles in the process of programmed cell death [5] and in many diseases [6]. The potential mechanism by which miR-10a affects renal I/R injury has not yet been reported

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.