Abstract

The aim of the present study was to examine the expression variation of the mouse hepatic fibrosis tissue transforming growth factor (TGF)-βl/Smads signal transduction pathway and its correlation with progression of hepatic fibrosis. The promotion effect of microRNA (miR)-10a on hepatic fibrosis and its possible mechanism was also assessed. Forty healthy female 8-week-old C57BL6/J mice were randomly divided into the control group (intraperitoneal injection of 5 µl/g normal saline, twice per week for 8 weeks) and the hepatic fibrosis group (intraperitoneal injection of 5 µl/g 10% CCI4 olive oil, twice per week for 8 weeks), with 20 mice per group. RT-PCR was used to test miR-10a expression in cells in the control and hepatic fibrosis groups. Cell culture and transfection of miR-10a mimics were conducted in the two groups and a Cell Counting Kit-8 was used to test the expression of TGF-β1 and Smad7 in hepatic fibroblasts. It was found that in comparison with the control group, miR-10a expression was significantly increased in the hepatic fibrosis group compared with the control group (P<0.05). The expression quantity of miR-10a was significantly increased in the transfection group compared with the control group (P<0.05). A high expression of miR-10a significantly improved TGF-β1 expression and reduced Smad7 expression in the hepatic fibrosis group (P<0.05). In conclusion, miR-10a expression was high in mouse hepatic tissues, transfection of miR-10a mimics significantly promoted the cell proliferation of hepatic fibrosis, and miR-10a improved hepatic fibrosis by regulating the TGF-βl/Smads signal transduction pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.