Abstract

The enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 (PFKFB3) is a critical regulator of glycolysis and plays a key role in modulating the inflammatory response, thereby contributing to the development of inflammatory diseases such as sepsis. Despite its importance, the development of strategies to target PFKFB3 in the context of sepsis remains challenging. In this study, we employed a microRNA-based approach to decrease PFKFB3 expression. Through multiple meta-analyses, we observed a downregulation of miR-106a-5p expression and an upregulation of PFKFB3 expression in clinical sepsis samples. These changes were also confirmed in blood monocytes from patients with early sepsis and from a mouse model of lipopolysaccharide (LPS)-induced sepsis. Overexpression of miR-106a-5p significantly decreased the LPS-induced increase in glycolytic capacity, inflammatory response, and pyroptosis in macrophages. Mechanistically, we identified PFKFB3 as a direct target protein of miR-106a-5p and demonstrated its essential role in LPS-induced pyroptosis and inflammatory response in macrophages. Furthermore, treatment with agomir-miR-106a-5p conferred a protective effect in an LPS mouse model of sepsis, but this effect was attenuated in myeloid-specific Pfkfb3 knockout mice. These findings indicate that miR-106a-5p inhibits macrophage pyroptosis and inflammatory response in sepsis by regulating PFKFB3-mediated glucose metabolism, representing a potential therapeutic option for the treatment of sepsis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call