Abstract

Microwave imaging (MWI) is a non-invasive technique that can identify unknown scatterer objects’ features while offering advantages such as low cost and portable devices with respect to other imaging methods. However, MWI faces challenges in solving the underlying inverse scattering problem, which involves recovering target properties from its scattered fields. Existing methods include linearized and non-linear optimization approaches, but they have limitations respectively in terms of range of validity and computational complexity (in view of the possible occurrence of ‘false solutions’). In recent years, learning-based approaches have emerged as they can allow real-time imaging but usually lack generalizability and a direct connection to the underlying physics. This paper proposes a physics-informed approach that combines convolutional neural networks with physics-based calculations. It is based on a few cascaded operations, making use of the gradient of the relevant cost function, and successively improving the estimation of the unknown target. The proposed approach is assessed using simulated as well as experimental Fresnel data. The results show that the integration of physics with deep learning can contribute to improve reconstruction accuracy, generalizability, and computational efficiency in MWI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.