Abstract

In this paper, we present approaches based on a mixed integer linear programming model (MIP) for the problem of packing rectangular boxes into a container or truck, considering multi-drop constraints. We assume that the delivery route of the container is already known in advance and that the volume of the cargo is less than or equal to the container volume. Considering the sequence that the boxes should be unloaded, the aim is to avoid additional handling when each drop-off point of the route is reached, as well as ensuring that the boxes do not overlap each other and the cargo loading is stable. Computational tests with the proposed model and the approaches were performed with randomly generated instances and instances from the literature using an optimization solver embedded into a modeling language. The results validate the model and the approaches, but indicate that they are able to handle only problems of a moderate size. However, the model and the approaches can be useful to motivate future research to solve larger problems, as well as to solve more general problems considering integrated vehicle routing and container loading problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.