Abstract
An axisymmetric finite element computer code named MIPAC has been developed for analysis of the mechanical interaction behaviour between a fuel pellet and cladding. This computer code can deal with elastoplasticity of the pellet and cladding materials, creep effects for the both materials, pellet-cladding and pellet-pellet contact problems, hot pressing effect of the fuel pellet, fuel pellet cracking, and the cracked pellet's stiffness. A cyclical boundary condition is introduced to deal with one pellet length instead of the full-size fuel rod. The contact problems are solved without a fictitious contact element. In the fuel pellet cracking model the crack opening and closing behaviour under arbitrary power changes can be treated by introducing five kinds of crack modes. Mismatch of irregular crack surfaces is taken into account in the evaluation of the cracked pellet's stiffness. Finally, calculated results are compared with experimental data to show validity of the computer code.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Nuclear Engineering and Design
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.