Abstract

The complex geological and climatic processes that have shaped the Indo-Australian Archipelago since the Cenozoic likely also gave rise to its species-rich biota. Strictly freshwater organisms might be particularly suitable for understanding the influence of these abiotic factors on their biogeography in such a insular setting as their distribution may reflect past abiotic events at large and small geographical scales. We here investigate the historical biogeography of the Miratestinae, a subfamily of Planorbidae. These freshwater gastropods are widely distributed in the eastern IAA from Australia, New Guinea, the Moluccas, and Sulawesi to the Philippines. The first comprehensive molecular phylogeny of the Miratestinae was inferred based on two mitochondrial and two nuclear genetic markers using maximum likelihood and Bayesian inference. Four species delimitation methods were applied to identify molecular operational taxonomic units (MOTUs). Divergence times were inferred using an uncorrelated lognormal relaxed-clock model by applying a taxon- and marker-specific substitution rate. Ancestral geographic ranges were estimated based on the dated phylogeny using BioGeoBEARS. The species delimitation revealed a total of 23 MOTUs, 16 of which might represent species new to science. The BioGeoBEARS analyses suggest an Australian origin for the Miratestinae at c. 22 Ma and identified jump dispersal to be the main process of colonization. The first colonization events from Australia to the IAA occurred in the Middle-Late Miocene (12–13 Ma), whereas intra-island diversification took mainly place since the Late Miocene-Pliocene. Colonization and diversification events remarkably coincide with major geologic events that shaped the geography of the region. The increasing availability of landmasses along the Sahul Shelf likely promoted stepping-stone dispersal to New Guinea, Sulawesi and the Philippines as early as the islands emerged. Major geological and climatic events such as the amalgamation of the island Sulawesi, the regional aridification in Australia or the uplift of massive mountain ranges in New Guinea likely played a considerable role for intra-island diversification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.