Abstract

AbstractAmber is renowned for the exceptional preservation state of its inclusions, allowing detailed morphological analysis and providing relevant environmental, palaeoecological, geographical, and geological information. Amber deposits are predominantly known from North America, Europe, and Asia, and are considered to be rare on the continents that formed Gondwana. The recent discovery of fossiliferous amber deposits in Ethiopia, therefore, provides an inimitable opportunity to close gaps in the fossil record of African terrestrial biota and to study organisms which are otherwise rare in the fossil record. Here we show that diverse cryptogams are preserved in highest fidelity in Miocene Ethiopian amber. We describe gametophyte fragments of four liverworts: Thysananthus aethiopicus sp. nov. (Porellales, Lejeuneaceae), Lejeunea abyssinicoides sp. nov. (Porellales, Lejeuneaceae), Frullania shewanensis sp. nov. (Porellales, Frullaniaceae), and Frullania palaeoafricana sp. nov. (Porellales, Frullaniaceae). Furthermore, we describe a pleurocarpous moss of the extant genus Isopterygium (Hypnales, Pylaisiadelphaceae) and a lichen representing the order Lecanorales. These new specimens represent the first amber fossils of liverworts, mosses, and lichens from the African continent and render Ethiopian amber as one of the few worldwide amber deposits preserving bryophytes (mosses and liverworts) or lichens. Fossil species of Thysananthus were recorded in Eocene Baltic and Oligocene Bitterfeld as well as Miocene Dominican and probably also Miocene Mexican ambers. Fossils that can unequivocally be assigned to Lejeunea have only been found in Dominican amber so far. Neotropical ambers contain only one taxon of Frullania to date, while the genus is most diverse in Baltic, Bitterfeld, and Rovno ambers, formed in temperate regions. The new fossils support a tropical to subtropical origin of Ethiopian amber. The new African liverwort fossils are included in an updated list of leafy liverworts described from worldwide Cenozoic ambers to date.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call