Abstract

In our electronically inter-connected society, reliable and user-friendly recognition and verification system is essential in many sectors of our life. The person’s physiological or behavioral characteristics, known as biometrics, are important and vital methods that can be used for identification and verification. Fingerprint recognition is one of the most popular biometric techniques used in automatic personal identification and verification. Many researchers have addressed the fingerprint classification problem and many approaches to automatic fingerprint classification have been presented in the literature; nevertheless, the research on this topic is still very active. Although significant progress has been made in designing automatic fingerprint identification systems over the past two decades, a number of design factors (lack of reliable minutia extraction algorithms, difficulty in quantitatively defining a reliable match between fingerprint images, poor image acquisition, low contrast images, the difficulty of reading the fingerprint for manual workers, etc.) create bottlenecks in achieving the desired performance. Nowadays, investigating the influence of the fingerprint quality on recognition performances also gains more and more attention. A fingerprint is the pattern of ridges and valleys on the surface of a fingertip. Each individual has unique fingerprints. Most fingerprint matching systems are based on four types of fingerprint representation schemes (Fig. 1): grayscale image (Bazen et al., 2000), phase image (Thebaud, 1999), skeleton image (Feng, 2006; Hara & Toyama, 2007), and minutiae (Ratha et al., 2000; Bazen & Gerez, 2003). Due to its distinctiveness, compactness, and compatibility with features used by human fingerprint experts, minutiae-based representation has become the most widely adopted fingerprint representation scheme. The uniqueness of a fingerprint is exclusively determined by the local ridge characteristics and their relationships. The ridges and valleys in a fingerprint alternate, flowing in a local constant direction. The two most prominent local ridge characteristics are: 1) ridge ending and, 2) ridge bifurcation. A ridge ending is defined as the point where a ridge ends abruptly. A ridge bifurcation is defined as the point where a ridge forks or diverges into branch ridges. Collectively, these features are called minutiae. Detailed description of fingerprint minutiae will be given in the next section. The widespread deployment of fingerprint recognition systems in various applications has caused concerns that compromised fingerprint templates may be used to make fake fingers, which could then be used to deceive all fingerprint systems the same person is enrolled in.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call