Abstract

BackgroundIn newborn resuscitation the recommended rate of chest compressions should be 90 per minute and 30 ventilations should be delivered each minute, aiming at achieving a total of 120 events per minute. However, this recommendation is based on physiological plausibility and consensus rather than scientific evidence. With focus on minute ventilation (Mv), we aimed to compare today’s standard to alternative chest compression to ventilation (C:V) ratios and different ventilation rates, as well as to continuous chest compressions with asynchronous ventilation.MethodsTwo investigators performed cardiopulmonary resuscitation on a newborn manikin with a T-piece resuscitator and manual chest compressions. The C:V ratios 3:1, 9:3 and 15:2, as well as continuous chest compressions with asynchronous ventilation (120 compressions and 40 ventilations per minute) were performed in a randomised fashion in series of 10 × 2 minutes. In addition, ventilation only was performed at three different rates (40, 60 and 120 ventilations per minute, respectively). A respiratory function monitor measured inspiration time, tidal volume and ventilation rate. Mv was calculated for the different interventions and the Mann–Whitney test was used for comparisons between groups.ResultsMedian Mv per kg in ml (interquartile range) was significantly lower at the C:V ratios of 9:3 (140 (134–144)) and 15:2 (77 (74–83)) as compared to 3:1 (191(183–199)). With ventilation only, there was a correlation between ventilation rate and Mv despite a negative correlation between ventilation rate and tidal volumes. Continuous chest compressions with asynchronous ventilation gave higher Mv as compared to coordinated compressions and ventilations at a C:V ratio of 3:1.ConclusionsIn this study, higher C:V ratios than 3:1 compromised ventilation dynamics in a newborn manikin. However, higher ventilation rates, as well as continuous chest compressions with asynchronous ventilation gave higher Mv than coordinated compressions and ventilations with 90 compressions and 30 ventilations per minute.

Highlights

  • In newborn resuscitation the recommended rate of chest compressions should be 90 per minute and 30 ventilations should be delivered each minute, aiming at achieving a total of 120 events per minute

  • We aimed to investigate different C:V ratios, ventilation rates, as well as continuous chest compressions with asynchronous ventilation with regards to delivered Tidal volume (VT) and minute ventilation (Mv) by using a newborn manikin, a T-piece resuscitator and a respiratory function monitor

  • In a pilot experiment we found that a positive end-expiratory pressure (PEEP) of 8 cm H2O and a peak inspiratory pressure (PIP) of 30 cm H2O were appropriate in order to obtain tidal volumes of 4–8 ml/kg in this model

Read more

Summary

Introduction

In newborn resuscitation the recommended rate of chest compressions should be 90 per minute and 30 ventilations should be delivered each minute, aiming at achieving a total of 120 events per minute. This recommendation is based on physiological plausibility and consensus rather than scientific evidence. The rate of chest compression should be 90 per minute and 30 inflations should be delivered each minute during cardiopulmonary resuscitation (CPR), aiming at achieving a total of 120 events per minute [8]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.