Abstract

Let $P$ be a graded poset of rank $r$ and let $\mathbf{c}$ be a $c$-element chain. For an order ideal $I$ of $P \times \mathbf{c}$, its rowmotion $\psi(I)$ is the smallest ideal containing the minimal elements of the complementary filter of $I$. The map $\psi$ defines invertible dynamics on the set of ideals. We say that $P$ has NRP ("not relatively prime") rowmotion if no $\psi$-orbit has cardinality relatively prime to $r+c+1$. In work with R. Patrias (2020), we proved a 1995 conjecture of P. Cameron and D. Fon-Der-Flaass by establishing NRP rowmotion for the product $P = \mathbf{a} \times \mathbf{b}$ of two chains, the poset whose order ideals correspond to the Schubert varieties of a Grassmann variety $\mathrm{Gr}_a(\mathbb{C}^{a+b})$ under containment. Here, we initiate the general study of posets with NRP rowmotion. Our first main result establishes NRP rowmotion for all minuscule posets $P$, posets whose order ideals reflect the Schubert stratification of minuscule flag varieties. Our second main result is that NRP promotion depends only on the isomorphism class of the comparability graph of $P$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.