Abstract

Bacteriophage φ6 contains three dsRNA chromosomes. Strand-separating agarose gels were used to study plus-and minus-strand synthesis in vivo and the effect of protein synthesis inhibitors. Analysis of φ6 RNA synthesis shows low levels of all three dsRNAs and ssRNAs at 10 min, increasing label uptake into all RNAs except the large message from 20 to 60 min, and a greater abundance of medium and small messages than large mRNAs at late times. Isoconformers of the small message are synthesized throughout infection. Northern analysis suggests that large messages made early may persist to direct continuing translation of L-segment-encoded transcription and replication proteins. The time course of φ6 minus-strand RNA synthesis in vivo, in the absence of background label in host RNAs, is reported for the first time. Label in minus strands is detected only after heat denaturation of RNA samples and appears sequentially in the small, medium, and large strands beginning at 20 min. At both early and late times, chloramphenicol arrests minus-strand synthesis rapidly and all three mRNAs accumulate. The results are consistent with the reovirus asynchronous model for dsRNA viral replication: plus ssRNAs made first are used as templates for minus-strand synthesis. They also indicate that replication protein(s) acts stoichiometrically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.