Abstract

Preconditioning has emerged as a valid strategy against different neurotoxic insults. Although the mechanisms underlying preconditioning are not fully understood, the activation of ATP-sensitive potassium (KATP) channels has been proposed to play a pivotal role in neuronal preconditioning. In the present work we examine whether minoxidil a KATP channel activator protects against the long-term toxicity caused by the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA) in rats. Our data show that intrastriatal administration of minoxidil prevents MDMA-induced long-term indole depletions in the rat striatum. This effect was not related to an effect on core temperature, as pre-treatment with minoxidil did not significantly alter MDMA-induced hyperthermia. Taking into account that minoxidil opens both sarcolemmal and mitochondrial KATP channels, we examined the role of each type of channels in the protective effects of minoxidil using specific inhibitors. The administration of HMR-1098, a blocker of the sarcolemmal KATP channels, along with minoxidil did not affect the protection afforded by the latter. On the contrary the selective mitochondrial KATP channel blocker 5-hydroxydecanoic acid completely reversed the protection afforded by minoxidil, thereby implicating the involvement of mitochondrial (but not sarcolemmal) KATP channels. Furthermore our data show the participation of Akt and extracellular signal-regulated kinases in minoxidil-afforded protection. Intrastriatal administration of wortmannin or PD98059 (inhibitors of phosphatidylinositol-3-kinase and mitogen-activated protein kinase/extracellular regulated protein kinase, respectively), along with minoxidil abolished the protective effect of minoxidil against the serotonergic toxicity caused by MDMA. These results demonstrate that minoxidil by opening mitochondrial KATP channels completely prevents MDMA toxicity and that Akt and MAP kinases are involved in minoxidil-afforded neuroprotection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.