Abstract

The distribution function of the minority ions during ion-cyclotron heating is calculated from a kinetic equation composed of a Landau collision term and a surface-averaged quasi-linear heating term. The kinetic equation is solved by a moment method in which the minority-ion distribution function is expanded in irreducible tensorial Hermite polynomials. The coefficients of the expansion are shown to be solutions of a system of coupled algebraic equations, and the effective minority-ion temperature is deduced from a compatibility constraint. The latter equation is in general too complicated to be solved analytically. The distribution function obtained here is therefore a semi-analytical result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.