Abstract

Transport phenomena in Schottky diodes are analyzed at high injection levels of minority carriers. It is shown that the correct description of these phenomena requires that the mode of diffusion stimulated by the quasi-neutral drift (DSQD) should be considered. An analytical expression for current–voltage characteristics of a Schottky diode at high injection levels is derived. The expression predicts a seemingly paradoxical result: the higher the base doping level, the higher the voltage drop across a diode at the same current density. The analytical results are confirmed by computer simulations. The results may be important for analyses of SiC Junction Barrier Schottky (JBS) diodes at very high current densities (surge current mode).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.