Abstract
This work falls within the theory of linear forms in logarithms over a commutative linear group defined over a number field. We give lower bounds for simultaneous linear forms in logarithms of algebraic numbers, treating both the archimedean and $p$-adic cases. The proof includes Baker's method, Hirata's reduction, Chudnovsky's process of variable change. The novelty is that we integrated into the proof the modern tools of adelic slope theory, using also a new small values Siegel's lemma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin de la Société mathématique de France
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.