Abstract
We describe sequence-specific alkylation in the minor groove of double-stranded DNA by a hybridization-triggered reactive group conjugated to a triplex forming oligodeoxyribonucleotide (TFO) that binds in the major groove. The 24 nt TFOs (G/A motif) were designed to form triplexes with a homopurine tract within a 65 bp target duplex. They were conjugated to an N 5-methyl-cyclopropapyrroloindole (MCPI) residue, a structural analog of cyclopropapyrroloindole (CPI), the reactive subunit of the potent antibiotic CC-1065. These moieties react in the DNA minor groove, alkylating adenines at their N3 position. In order to optimize alkylation efficiency, linkers between the TFO and the MCPI were varied both in length and composition. Quantitative alkylation of target DNA was achieved when the dihydropyrroloindole (DPI) subunit of CC-1065 was incorporated between an octa(propylene phosphate) linker and MCPI. The required long linker traversed one strand of the target duplex from the major groove-bound TFO to deliver the reactive group to the minor groove. Alkylation was directed by relative positioning of the TFOs. Sites in the minor groove within 4-8 nt from the end of the TFO bearing the reactive group were selectively alkylated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.