Abstract

Anticancer drugs that alkylate DNA in the minor groove may give rise to 3-alkyl-adenosine adducts that interfere with replication, inducing apoptosis in rapidly dividing cancer cells. However, translesion DNA synthesis (TLS) by polymerase enzymes (Pols) with the capacity to bypass DNA adducts may contribute to damage tolerance and drug resistance. 3-Alkyl-adenosine adducts are unstable and depurinate, which is a barrier to addressing chemical and enzymatic aspects of how they impact the progress of DNA Pols. To characterize structure-based relationships of 3-adenine alkylation relevant to cancer drugs on duplex stability and DNA Pol-catalyzed DNA synthesis, we synthesized stable 3-deaza-3-alkyl-adenosine analogues, including 3-deaza-3-phenethyl-adenosine and 3-deaza-3-methoxynaphthylethyl-adenosine, and incorporated them into oligonucleotides. A moderate reduction of duplex stability was observed on the basis of thermal denaturation data. Replication studies using purified Y-family human DNA Pols hPol η, κ, and ι indicated that these enzymes can perform TLS over the modified bases. hPol η had higher misincorporation rates when synthesizing opposite the modified bases compared with adenine, whereas hPol κ and ι maintained high fidelity. These results provide insight into how alterations in chemical structure reduce bypass of minor-groove adducts, and provide novel chemical probes for evaluating minor-groove DNA alkylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.