Abstract

Optimising the cutting tool geometries can reduce waste while increasing timber yield. The industry is moving towards thin-kerf bandsawing of timber, and therefore, the geometry of the minor cutting edge and minor first flanks of cutting teeth become more important. Six cutting teeth with varying minor cutting edge angles (0^{circ }, 2^{circ }, 4^{circ }, 6^{circ }) and minor cutting edge clearance angles (2^{circ }, 4^{circ }, 6^{circ }) were tested by cutting into the heartwood and sapwood of frozen and non-frozen Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.). Single cutting tooth tests were conducted, and the cutting and feeding forces were measured. The cutting forces were higher for Scots pine due to its higher density. Frozen sapwood resulted in higher cutting forces. The feeding force of frozen sapwood stood out as it was highly negative (i.e. self-feeding) compared to frozen heartwood, non-frozen heartwood and non-frozen sapwood. An increase in the minor cutting edge angle and minor cutting edge clearance angles, and therefore more room for elastic spring-back, can lead to up to less friction and 40% lower cutting forces. Higher minor cutting edge angles and minor cutting edge clearance angles resulted in less-negative feeding forces (i.e. less self-feeding) for frozen sapwood but remained relatively unchanged for the other wood conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call