Abstract

Current chemical test strategies lack sensitive markers for detecting female reproductive toxicity caused by endocrine disrupting chemicals (EDCs). In search of a potentially sensitive readout, the steroidogenic disrupting effects of the well-known EDCs ketoconazole (KTZ) and diethylstilbestrol (DES) were investigated in vitro and on circulating steroid hormones in perinatally exposed female Sprague-Dawley rats. Twenty-one steroid hormones were analysed using LC-MS/MS in plasma from female rat offspring at postnatal day (PD) 6, 14, 22, 42 and 90. Most circulating steroid hormone levels increased with age except for estrone (E1), estradiol (E2) and backdoor pathway androsterone (ANDROST), which decreased after PD 22. Perinatal exposure to DES did not affect circulating steroid hormone levels at any dose or age compared to controls. KTZ exposure resulted in dose-dependent increase of corticosterone (CORTICO) at PD 6 and PD 14, with statistical significance only at PD 14. In the in vitro gold standard H295R steroidogenesis assay, twenty-one steroid hormones were measured instead of only T and E2. DES had subtle effects on steroidogenesis, whereas KTZ decreased most steroid hormones, but increased CORTICO, progesterone (P4), estriol (E3) initially (around 0.1–1 µM) before decreasing. Our data suggests that circulating steroidomic profiling may not be a sensitive readout for EDC-induced female reproductive toxicity. Further studies are needed to associate H295R assay steroidomic profiles with in vivo profiles, especially in target tissues such as adrenals or gonads. Expanding the H295R steroidogenic assay to include a comprehensive steroidomic profile may enhance its regulatory applicability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.