Abstract

High genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) isolates is a major obstacle for the development of effective PRRS vaccines. A chimeric highly pathogenic PRRSV2 (HP-PRRSV2) strain containing the consensus sequence of ORF2-6 genes was constructed in our previous study, which could induce broadly neutralizing antibodies (bnAbs) and confer satisfied cross protection against virulent NADC30-like isolate. To further elucidate the roles of minor and major envelope proteins encoded by ORF2-4 and ORF5-6 genes in conferring cross protection, two chimeric HP-PRRSV2 strains (rJS-ORF2-4-CON and rJS-ORF5-6-CON) containing consensus sequences of ORF2-4 or ORF5-6 were constructed and rescued in this study. The rJS-ORF5-6-CON strain has similar replication efficiency as the backbone HP-PRRSV2 rJSTZ1712-12 virus, while rJS-ORF2-4-CON has significantly lower in vitro and in vivo replication efficiency comparing to rJS-ORF5-6-CON. Animal inoculation indicated that both rJS-ORF2-4-CON and rJS-ORF5-6-CON did not cause obvious clinical signs in piglets and could induce heterologous nAbs after immunization. Challenge with a virulent heterologous NADC30-like SD17-38 isolate showed that even though both immunized groups presented lower viremia, faster virus elimination, less fever and alleviated lung gross lesions when compared with the only challenged pigs, rJS-ORF2-4-CON and rJS-ORF5-6-CON could not confer enough cross protection. Considering the bnAbs and satisfied cross protection induced by the chimeric virus containing ORF2-6 consensus sequence, our results support that minor and major envelope proteins play synergistic roles in inducing broader nAbs and conferring better cross protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call