Abstract

Objectives: Microglial activation and thrombin formation contribute to brain injury after intracerebral hemorrhage. Tumor necrosis factor-alpha and interleukin-1beta are two major pro-inflammatory cytokines. The present study investigated if thrombin stimulates tumor necrosis factor-alpha and interleukin-1beta secretion in vitro and if microglial inhibition reduces intracerebral hemorrhage-induced brain injury in vivo.Methods: There were two parts in this study. In the first part, cultured rat microglial cells were treated with vehicle, thrombin (10 U/ml) or thrombin plus minocycline (1 or 10 μM), an inhibitor of microglia activation. Levels of tumor necrosis factor-alpha and interleukin-1beta in culture medium were measured by enzyme-linked immunosorbent assay 24 hours after thrombin treatment. In the second part, rats had an intracerebral injection of 100 μl autologous whole blood. Rats received minocycline or vehicle treatment. Brain edema was measured at day 3 and brain atrophy was determined at day 28 after intracerebral hemorrhage.Results: Thrombin receptors were expressed in cultured microglia cells, and tumor necrosis factor-alpha and interleukin-1beta levels in the culture medium were increased after thrombin treatment. Minocycline reduced thrombin-induced up-regulation of tumor necrosis factor-alpha and interleukin-1beta. In vivo, minocycline reduced perihematomal brain edema, neurological deficits and brain atrophy.Discussion: Thrombin stimulates microglia to release the pro-inflammatory cytokines, tumor necrosis factor-alpha and interleukin-1beta, and microglial inhibition with minocycline reduces brain injury after intracerebral hemorrhage, suggesting a critical role of microglia activation in intracerebral hemorrhage-related brain injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.