Abstract
AbstractInflammatory responses and neuronal ferroptosis, which are associated with abnormal accumulation of reactive oxygen species (ROS), exert crucial damaging effects on the brain after intracerebral hemorrhage (ICH). In this study, minocycline (MC)‐loaded cerium oxide nanoparticles (CeO2‐MC) are constructed for combined ICH treatment. Ultra‐small CeO2 (≈5 nm) synthesized via a high‐temperature approach exhibits powerful free‐radical scavenging and iron‐chelating abilities. In vitro experiments demonstrated that CeO2‐MC effectively attenuated the ROS levels in mouse microglial cells and neurons following oxyhemoglobin stimulation. In addition, CeO2‐MC exhibits iron chelation properties and stabilizes the mitochondrial membrane potential, thereby promoting anti‐inflammatory responses and preventing neuronal ferroptosis. In an intracerebral hemorrhage (ICH) mouse model, CeO2‐MC exhibited robust free radical scavenging capabilities and demonstrated the ability to preserve mitochondrial morphology and function, mitigate brain edema, and maintain blood–brain barrier integrity by inhibiting neuroinflammation and ferroptosis. Neurobehavioral tests demonstrated that CeO2‐MC significantly ameliorated spatial learning ability and sensorimotor function after ICH. Consequently, a general strategy using CeO2 nanoparticles to augment the therapeutic efficacy of MC highlights a new perspective for the in‐depth treatment of ICH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.