Abstract

ObjectivesThis study is aimed at investigating the novel use of minocycline for cardiac protection during ischemia/reperfusion (I/R) injury, as well as its mechanism of action. BackgroundMinocycline is a tetracycline with anti-inflammatory properties, which is used clinically for the treatment of diseases such as urethritis and rheumatoid arthritis. Experimentally, minocycline has also been shown to be neuroprotective in animal models of cerebral ischemia and to delay progression and improve survival in mouse models of neurodegenerative diseases. MethodsWe studied 62 rat intact hearts exposed to I/R and cell cultures of neonatal and adult rat ventricular myocytes. ResultsMinocycline significantly reduced necrotic and apoptotic cell death, both in neonatal and adult myocytes, not only when given prior to hypoxia (p < 0.001), but also at reoxygenation (p < 0.05). Moreover, in the intact heart exposed to I/R, in vivo treatment with minocycline promoted hemodynamic recovery (p < 0.001) and cell survival, with reduction of infarct size (p < 0.001), cardiac release of creatine phosphokinase (p < 0.001), and apoptotic cell death (p < 0.001). In regard to its antiapoptotic mechanism of action, minocycline significantly reduced the expression level of initiator caspases, increased the ratio of XIAP to Smac/DIABLO at both the messenger RNA and protein level, and prevented mitochondrial release of cytochrome c and Smac/DIABLO (all, p < 0.05). These synergistic actions dramatically prevent the post-ischemic induction of caspase activity associated with cardiac I/R injury. ConclusionsBecause of its safety record and multiple novel mechanisms of action, minocycline may be a valuable cardioprotective agent to ameliorate cardiac dysfunction and cell loss associated with I/R injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.